A Novel Technique for Stiffening Steel Structures Introduction

ثبت نشده
چکیده

The use of composite materials for strengthening the ailing infrastructure has steadily gained acceptance and market share. Employing composite materials in strengthening of steel structures is the subject of this study. There are several challenges that face strengthening steel structures using composite materials. The superior mechanical properties of steel result in a reduction in the efficiency of composite strengthening. Hence, it is often cited that high modulus composites are needed to improve the effectiveness of the strengthening system. This study explores a novel composites strengthening technique that is particularly suited for thin-walled steel structures. The proposed technique relies on improving the out-of-plane stiffness of buckling prone members by bonding pultruded fiber reinforced polymers (FRP) sections as opposed to the commonly used strengthening approach that relies on in-plane FRP contribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Reinforcement Type on the Tension Stiffening Model of Ultra-High Performance Concrete (UHPC)

Ultra-high performance concrete (UHPC) is a developing concrete and today is increasing to interest using it in structures due to its advantages such as high-compressive strength, modulus of elasticity, highly durability and low-permeability. Therefore, it is necessary to provide models for prediction of nonlinear behavior of this material. This study is aimed to investigate the tension-stiffen...

متن کامل

Tension Stiffening Parameter in Composite Concrete Reinforced with Inoxydable Steel: Laboratory and Finite Element Analysis

In the present work, behavior of inoxydable steel as reinforcement bar in composite concrete is being investigated. The bar-concrete adherence in reinforced concrete (RC) beam is studied and focus is made on the tension stiffening parameter. This study highlighted an approach to observe this interaction behavior in bending test instead of direct tension as per reported in many references. The a...

متن کامل

The Tension-Stiffening Contribution of NSM CFRP to the Behavior of Strengthened RC Beams

Tension stiffening is a characteristic behavior of reinforced concrete (RC) beams which is directly affected by the bond-slip property of steel bar and concrete interfaces. A beam strengthened with a near-surface mounted (NSM) technique would be even more affected by tension stiffening, as the NSM reinforcement also possess a bond-slip property. Yet assessing how much the tension stiffening of ...

متن کامل

Comparison of Seismic Behavior of Buckling-restrained Braces and Yielding Brace System in Irregular and Regular Steel Frames under Mainshock and Mainshock-Aftershock

Due to low stiffness of braces after yielding, the structures with buckling-restrained braces (BRBs) experience high residual drifts during an earthquake, which can be intensified by aftershocks and causes considerable damages to structures. Also, due to poor distribution of stiffness, this problem is exacerbated for irregular structures. Recently, the yielding brace system (YBS) has been intro...

متن کامل

Modification of the Euler load for the stiffened compressive members and determination of the optimal stiffening for the maximum buckling load

The potential of buckling in compressive members has been considered as a disadvantage when using steel members in the construction industry. In spite of the progress made in this regard, buckling is still considered as a challenge in the analysis and design of compressive steel structural members. Such a challenging phenomenon can be controlled by strengthening of compressive members. Stiffene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009